Benefit Analysis of Process Oriented Basis Representation as a Method of Multivariate Statistical Process Control
نویسندگان
چکیده
Process-Oriented Basis Representation (POBREP) is an effective method of multivariate statistical process control that is seldom used in manufacturing. Rather than monitoring individual process variables, POBREP seeks to identify specific causes of production problems and map those into a basis matrix. These patterns can then be monitored with single-variable SPC techniques or traditional multivariate methods. This article discusses the benefits associated with this method, including improved diagnosing capabilities and more efficient SPC results. Simulation-generated multivariate data is used to compare POBREP with other methods, and a practical illustration is based on semiconductor chip manufacturing.
منابع مشابه
Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملProcess Capability Analysis in the Presence of Autocorrelation
The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models, among which the autoregressive model of order one (AR (1))...
متن کاملProcess Capability Analysis in the Presence of Autocorrelation
The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models among which the autoregressive model of order one (AR (1)) ...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملOn the Performance of a Multivariate Control Chart in Multistage Environment
In this paper, a Multivariate-Multistage Quality Control (MVMSQC) procedure is investigated. In this procedure discriminate analysis, linear regression and control chart theory are combined to control the means of correlated characteristics of a process, which involves several serial stages. Furthermore, the quality of the output at each stage depends on the output of the previous stage as well...
متن کامل